

Shadowing and radiative corrections at low x and Q²

Antje Bruell Hall C summer workshop, August 2008

Motivation

• x- and A-dependence of the EMC effect

Motivation

• Q²-dependence of the EMC effect

Motivation

• Q²-dependence of the EMC effect

EKS98

- \Rightarrow Parametrize $R_{F_2}^A(x)$ at $Q_0^2=2.25\,\mathrm{GeV}^2$
- \Rightarrow Valence quarks $R_{u_V}^A=R_{d_V}^A=R_V^A(x)$
 - ightharpoonup Large-x fixed to $R_V^A \simeq R_{F_2}^A$
 - Intermediate-x by DY
 - Rest: Baryon number sum rule
- \Rightarrow Sea quarks $R_{\bar{u}}^A=R_{\bar{d}}^A=R_{\bar{s}}^A=R_S^A(x)$
 - ightharpoonup Small-x fixed to $R_S^A \simeq R_{F_2}^A$
 - Intermediate-x by DY
 - Large-x: assumption
- Gluons
 - ightharpoonup Large/small-x fixed to $R_g^A \simeq R_{F_2}^A$
 - Intermediate-x: DGLAP

Approximate ranges and constraints in EKS98

Comparison of different parametrisations

4 3

Q² evolution of R_G^A

DGLAP evolution removes the nuclear effects very efficiently

4 3

Possible Measurements @ 12 GeV

C/D

Possible Measurements @ 12 GeV

Sn/C

What's the problem?

- huge radiative effects at extreme kinematics
- radiation from elastic and quasielastic scattering dominant at low E'
- both external and internal effects important
- higher order effects important
- additional complications
 for heavy nuclei

> dedicated measurement of radiative effects

- select kinematics with large radiative effects
- Measure the spectrum of emitted photons up to angles of $\sim 2^0$
- Calorimeters around beam and scattered electron directions
- beam currents of ~ 10 nA to avoid radiation damage

scattered electron 7x7 crystals

beam electron 22x22 crystals (2x2x18cm³)

beam electron: reconfiguration of HYCAL

Summary

- Q² dependence of shadowing not understood
- important for determination of gluon distribution in nuclei
- previous measurements with electron beams limited by systematic uncertainties in radiative corrections
- 11 GeV beam allows measurements connecting to previous NMC experiments at low x
- Control of systematics requires to measure the spectrum of emitted photons
- Calorimeters around beam and scattered electron directions for dedicated measuremens at low currents
- ullet possibility to measure F_L and its truncated moment presently under study
- parallel measurements of R_H and R_D at low x and Q^2